Dr A R Godfrey a.r.godfrey@swansea.ac.uk

SCHOOL OF MEDICINE SWANSEA UNIVERSITY

www.medicine.swansea.ac.uk

□ Plastics – a problem?

GAC - GC-VUV?

"All-in-one" plastics analysis

Given Setup Setup

What can we see?

"You see, but you do not observe..."

Sherlock Holmes, Sir Arthur Conan Doyle

- 1. <u>Blue</u> plastic (polymer, dye...)
- 2. Colourless plastic (polymer, UV stabiliser...)
- 3. Silicone rubber (polymer, plasticiser...)
- 4. "Tide mark" damage *Leaching?*

What can we see?

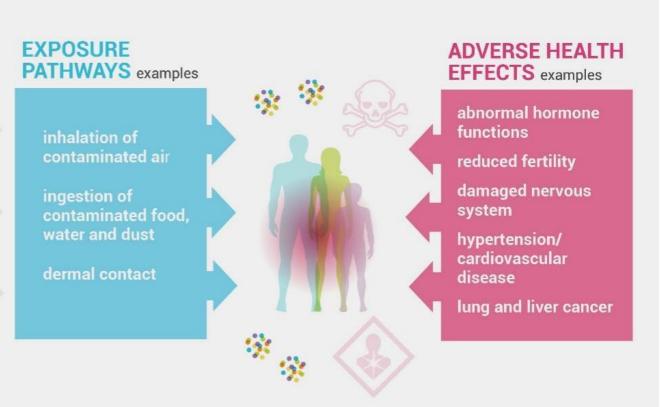
"You see, but you do not observe..."

Leaching & Absorption?

Plastics – a problem?

UN, Chemicals in Plastics, 2023

SOURCES


EVERYDAY PLASTIC PRODUCTS, e.g. plasticbased food contact materials, building materials, electronics, textile, clothing and personal care and household products

CHILDREN'S products e.g. toys, clothing or furniture.

OCCUPATIONAL exposure at various stages of the plastic value chain

Open-burning of plastic waste can release toxic chemicals such as dioxins and furans Chemicals can be released during the use of plastic products iocides or antistatic agents

Source: Geyer et al. 2017

Plastics - Analysis

3.

<u></u>Д.

5.

6.

7.

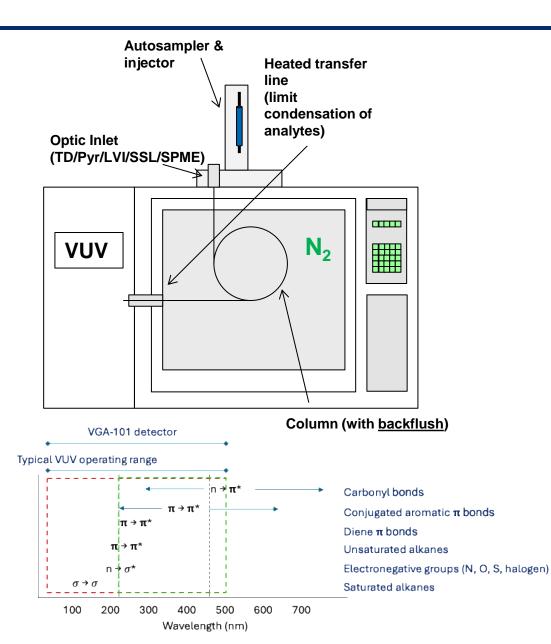
8.

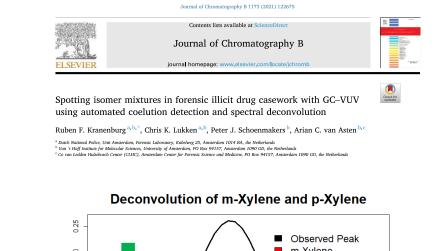
9.

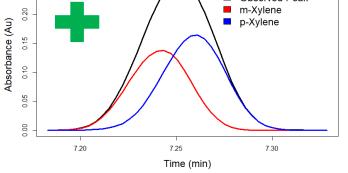
10.N

G

TrAC Trends in Analytical Chemistry Volume 50, October 2013, Pages 78-84

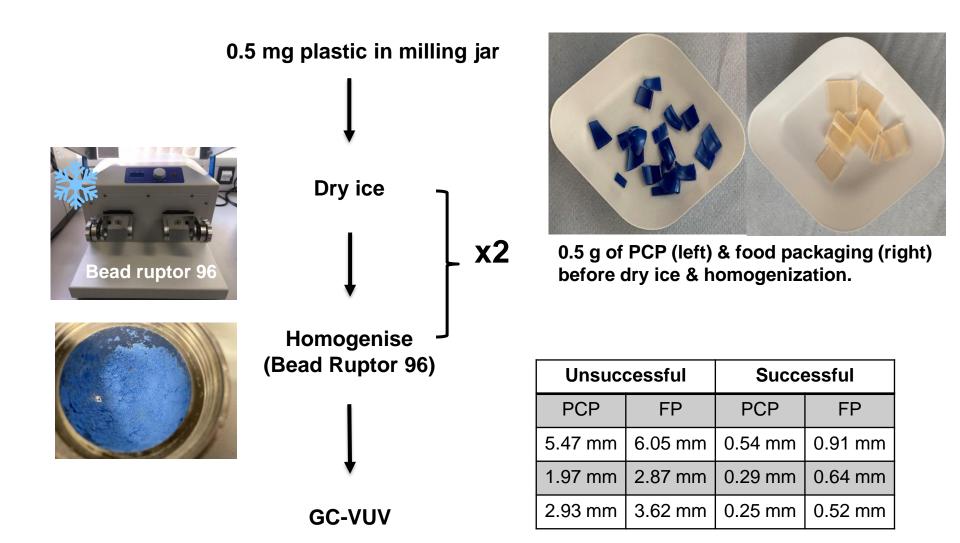

С

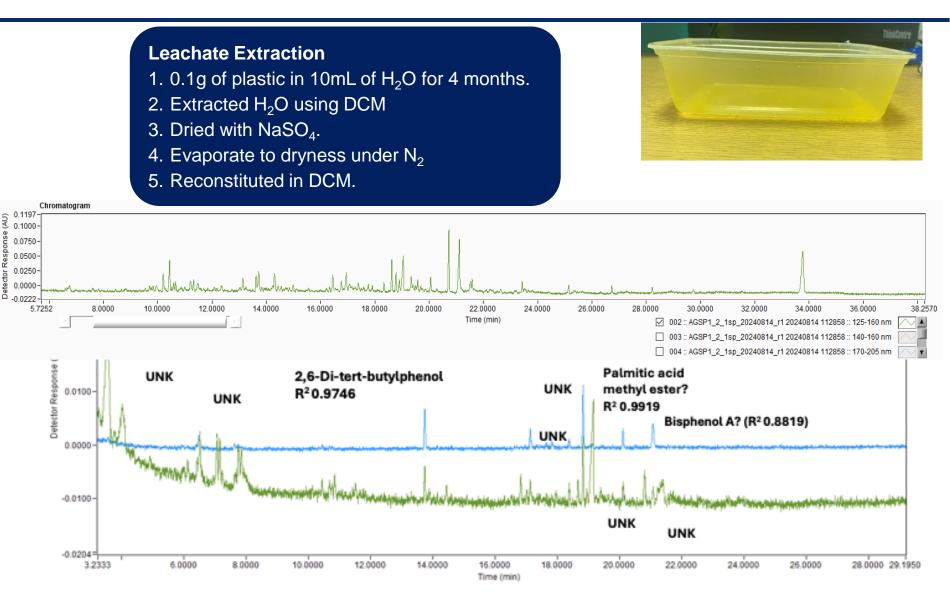

- **1.** Select direct analysis
- 2. Integrate process & operations


Plastics (mol) analysis – challenges

- 1. Different techniques for solids & leachate NOT GAC
- 2. FTIR limited selectivity & sensitivity of methods
- 3. GCxGC-MS complex & expensive NOT GAC

11.Choose multi-analyte or multi-parameter method 12.Eliminate/replace toxic reagents





 $A = \sigma nb$

A = absorbance (AU or mAU) σ = absorption cross-section (mol/L/cm) n = number of absorbing molecules within the volume (mol/cm³) b = flow cell path length (cm)

μm.			(min)
		DMP	12.6
 5uL injection at 2:1 split. 		DEP	14.5
	Dia atiaia ana	BBP	22.6
 VUV - flow cell & transfer line @ 340 °C, 	Plasticisers	Di(so)BP	17.9
125-430 nm.		DBP	19.0
125-430 nm.		DEHA	23.9
0.4531= IPM	 Flame retardants 	TPP	11.8
0.4250 - IPW 0.4000 -	Stabilisers	TPhP	23.1
0.3750 - 0.3500 -	Lubricant and slip agents	IPM	17.5
0.3250- 0.3000- 0.2750- 0.2500- 0.2250- 0.1750- 0.1500- 0.1500- 0.1500- 0.1500- 0.0750- 0.0500- 0.0250- 0.0	BBP TPhF	DEHA	

Next Steps....

State of play 2014-2024

- 1. 8 research papers
- 2. Only 4 papers on leachate 3 on baby bottles, but not 'sippy cups' or dummies
- Studies <u>do not</u> fully reflect stress of sterilisation for all product types

AVENT

AVENT

AVENT.

AWEL

• 1 paper tests 10x usage

Next Steps....

Some thank you's

- The research team!!!!!
 - NRW
 - Biotage
 - VUV Analytics
 - SSS Ltd
 - Omni Intl (a Revvity brand)

