

Discovery of Novel Metagenomic Carboxylesterases from Extreme Environments for Recycling Synthetic Polyesters

Hairong Ma

CEB, School of Natural and Environmental Sciences, Bangor University, UK

Supervisors: Prof. Peter Golyshin, Prof. Alexander Yakunin, Dr. Anna Khusnutdinova

Polyester plastics

1. Productions

- polyester plastics
 production 40 million
 tonnes in 2023
- The production is expected to grow at a rate of 7% per year.
- Widely used in the manufacturing of fibres for clothing, home furnishings, packaging materials (like plastic bottles).

2. Waste Generation

- Production of 350 million tonnes of total plastic waste annually
- A significant portion of waste comes from polyester plastics
- Only 23% of plastic recycled,
 42% to landfills and 35% is
 incinerated
- The remaining waste often ends up in natural environments, contributing to pollution

3. Enzymatic degradation of polyesters

Monomers and Oligomers

Thermostable Esterases

Previous work done in the CEB labs

Hydrothermal vent of the volcanic island located in Italy

Target selections

Previous work done in the CEB labs

IS12 esterase, had excellent **thermostability** and **plastic degrading** properties (from terrestrial hydrothermal vents located on the volcanic island of Ischia Italy). Sequences selected with sequence identity around 20% to 80%

Protein name	ORF/gene name	Uniprot ID	Protein length	% identity	Origin
1. IS12	ENO43_03940	A0A7C2Y9X0	318 aa	100%	Metagenome (Chloroflexota bacterium)
2. ABO2108	ABO_2108	Q0VMP2	316 aa	25.9%	Alcanivorax borkumensis SK2
3. ANB01465	ENQ48_01465	A0A7C1F4L0	305 aa	60.8%	Anaerolinea bacterium
4. BHR00087	HRbin25_00087	A0A2H5YLC6	308 aa	59.4%	Metagenome (bacterium HR25)
5. BHR01264	HRbin23_01264	A0A2H5YDR5	313 aa	65.3%	Metagenome (bacterium HR23)
6. CBA10055	ENP32_10055	A0A7C2D648	317 aa	78.9%	Metagenome (Chloroflexota bacterium)
7. CBA17115	ENQ04_17115	A0A7C1KEJ6	313 aa	59.7%	Metagenome (Chloroflexota bacterium)
8. CZA1602	CYCME_1602	S5TGE2	298 aa	28.7%	Cycloclasticus zancles 78-ME
9. CFI14619	PBF_14619	W7KS99	315 aa	57.8%	Cytobacillus firmus DS1
10. GEN0093	n/aª	A0A0G3FEG6	341 aa	46.7%	Metagenome (Evry anaerobic digester)
11. GEN0105	n/aª	A0A0G3FJ39	322 aa	25.2%	Metagenome (Evry anaerobic digester)
12. Lip9a	lip9A	B8Y559	311 aa	54.%	Metagenome (uncultured bacterium)
13. MAGIC0005	KKH72_12785	A0A947SHF8	289 aa	34.0%	Metagenome (Arreo Lake)
14. MGS0004	n/aª	A0A0G3FL07	325 aa	45.5%	Metagenome (Messina harbour)
15. MGS0006	n/aª	A0A0G3FES7	297 aa	30.1%	Metagenome (Messina harbour)
16. MGS0008	n/aª	A0A1S5QLY1	360 aa	22.9%	Metagenome (Messina harbour)
17. MGS0017	n/aª	A0A0G3FET2	361 aa	21.8%	Metagenome (Milazzo harbour)
18. MGS0018	n/aª	T1VZD5	277 aa	24.2%	Metagenome (R. exoculata gill chamber)
19. MGS0033	To be submitted	WP_025895805	305 aa	22.9%	Metagenome (Milazzo harbour)
20. MGS0077	n/a	A0A0G3FJ64	312 aa	50%	Metagenome (composting plant)
21. MGS0089	n/a	A0A0G3FH39	296 aa	26.1%	Metagenome (MT Haven sunken shipwreck)
22. MGS0090	n/a	A0A0G3FEJ0	313 aa	45.7%	Metagenome (MT Haven sunken shipwreck)
23. MGS0103	n/a	A0A0G3FEU6	327 aa	49.7%	Metagenome (Sobeslav soil)
24. MGS0171	n/a	A0A0G3FL37	264 aa	22.6%	Metagenome (R. exoculata gill chamber)
25. MGS-MesE1	n/a	A0A1S5QKE7	319 aa	25.5%	Metagenome (Messina harbour sediment)
26. PTH04245	DCC39_04245	A0A2U1K574	309 aa	58.9%	Pueribacillus theae

Phylogenetic analysis of selected proteins

Carboxylesterases (E.C. 3.1.1.1)

- A class of enzyme from α/β hydrolases
- Bearing a catalytic **Ser-His-Asp**
- Esterases show preference for **short-chain** (<10-12 carbon atoms)
- Frequently show catalytic promiscuity
- Esterases have many industrial applications (i.e. food and paper; additive in detergent, biodiesel fuel, etc.)

According to classification of lipolytic enzymes, selected proteins belong to the carboxylesterase family IV (hormone sensitive-like) with the characteristic catalytic Ser motif **GDSAGG**. 5

Mono- and polyesterase activity screening

80.0

20.0

Carboxylesterase activity (U/mg), 0.5 1.0

2.0

5.0

10.0

	ho-Nitrophenyl ester			Fatty	Fatty acid		ho-Nitrophenolate	
	C2	C4	C8	C12	C14	C16	C18	
IS12	28.24	1.54	0.57	0.28	0.98	n.d.	0.63	
ABO2108	7.24	11.45	0.70	1.00	0.19	n.d.	n.d.	
ANB01465	3.61	3.83	0.48	n.d.	0.16	n.d.	n.d.	
BHR00087	11.81	15.10	0.88	0.32	0.11	n.d.	0.63	
🛨 BHR01264	13.23	0.43	0.12	0.63	0.37	n.d.	0.20	
★ CBA10055	39.48	3.77	1.96	0.82	0.39	0.24	0.17	
CBA17115	70.87	2.42	0.40	n.d.	0.19	n.d.	n.d.	
CFI14619	32.88	0.55	0.89	n.d.	0.82	0.86	0.68	
CZA1602	4.00	0.81	0.20	0.49	0.21	0.36	0.48	
GEN0093	87.53	63.17	n.d.	0.30	0.79	n.d.	0.13	
🛨 GEN0105	1.92	19.54	2.18	1.56	0.78	0.23	0.12	
Lip9a	10.62	18.55	0.93	0.25	0.59	0.16	n.d.	
MAGIC0005	15.53	33.12	1.17	0.35	0.64	n.d.	n.d.	
★ MGS-MesE1	15.80	58.85	2.67	0.50	0.81	0.18	n.d.	
MGS0004	n.d.	n.d.	0.58	0.14	0.64	0.27	0.18	
MGS0006	5.58	1.86	0.65	0.94	0.47	n.d.	n.d.	
MGS0008	2.36	11.41	1.13	0.19	0.51	0.17	0.26	
MGS0017	1.25	1.93	0.28	0.74	0.22	0.33	0.18	
MGS0018	1.49	8.50	0.55	0.15	0.33	0.15	0.42	
MGS0033	n.d.	10.33	0.55	0.19	n.d.	n.d.	0.27	
MGS0077	14.24	11.24	n.d.	0.30	0.69	n.d.	n.d.	
MGS0089	0.90	2.50	0.99	0.50	n.d.	n.d.	n.d.	
MGS0090	16.35	21.69	0.76	0.19	0.52	0.17	0.16	
MGS0103	14.89	3.90	1.46	0.31	0.12	0.18	0.78	
MGS0171	0.38	7.63	1.16	0.16	0.72	n.d.	n.d.	
PTH04245	10.13	0.28	0.42	0.13	0.29	0.53	0.30	

-	Gel	BA	BHET	MHET	TA		Gel (6-HHA		Gel	LA	
IS12	++	17.29	1.85	2.24	n.d.	IS12	-	5.56	IS12	++	1.19	
ABO2108	+	2.18	n.d.	0.61	n.d.	ABO2108	-	5.25	ABO2108	-	0.38	
ANB01465	-	2.74	n.d.	2.92	n.d.	ANB0146	-	9.94	ANB0146	-	0.86	
BHR00087	++	2.58	0.21	0.27	n.d.	BHR00087	+	4.44	BHR00087	-	0.17	
+BHR01264	-	60.20	n.d.	11.05	n.d.	BHR01264	-	2.49	BHR01264	-	2.55	
CBA10055	++	41.02	8.61	11.83	n.d.	CBA10055	+++	74.16	CBA10055	+++	11.51	
CBA17115	-	1.40	n.d.	0.73	0.03	CBA17115	++	6.97	CBA17115	-	0.40	
CFI14619	-	0.77	0.12	0.21	n.d.	CFI14619	++	9.69	CEI14619	-	nd	
CZA1602	-	0.92	0.02	0.47	n.d.	CZA1602	+	8.37	CZA1602	-	6.11	
GEN0093	++	2.58	n.d.	1.08	0.01	GEN0093	+	13.56	GEN0093	-	0.31	
★GEN0105	+++	112.66	n.d.	85.70	1.60	GEN0105	+++	191.38	GEN0105	+++	1.93	
Lip9a	++	3.63	0.45	1.58	0.08	Lip9a	+	2.46	Lip9a	-	0.28	
MAGIC0005	+++	2.63	0.36	0.25	n.d.	MAGIC0005	-	4.22	MAGIC0005	-	0.11	
★MGS-MesE1	+++	94.03	n.d.	49.32	3.59	MGS-MesE1	-	4.85	MGS-MesE1	-	0.61	
MGS0004	-	10.12	n.d.	4.25	n.d.	MGS0004	++	44.25	MGS0004	-	1.36	
MGS0006	-	0.62	n.d.	0.27	n.d.	MGS0006	+	1.49	MGS0006	-	0.52	
MGS0008	-	2.83	n.d.	1.52	n.d.	MGS0008	++	8.37	MGS0008	-	0.14	
MGS0017	-	1.33	n.d.	1.45	0.06	MGS0017	++	1.85	MGS0017	-	0.54	
MGS0018	++	3.79	0.18	0.85	n.d.	MGS0018	-	11.69	MGS0018	-	2.97	
MGS0033	-	1.28	n.d.	0.78	n.d.	MGS0033	++	8.77	MGS0033	-	0.89	
MGS0077	++	3.88	n.d.	1.61	0.02	MGS0077	+	2.25	MGS0077	-	0.85	
MGS0089	-	5.79	n.d.	2.67	0.14	MGS0089	-	3.30	MGS0089	-	0.13	
MGS0090	+	2.31	n.d.	0.92	n.d.	MGS0090	+	2.45	MGS0090	-	0.19	
MGS0103	+++	3.59	0.46	0.63	n.d.	MGS0103	++	19.34	MGS0103	-	1.19	
MGS0171	++	61.97	n.d.	19.73	n.d.	MGS0171	+++	18.42	MGS0171	-	0.96	
PTH04245	+	4.47	n.d.	0.81	n.d.	PTH04245	+	2.64	PTH04245	-	0.18	
Activity (m	U/mg)	1	2 5	10	50 📃 100	5	10	50	1	2	5	5

* GEN0105 highly active

Agarose gel based activity analysis

Activity based analysis of thermostability

 Thermostability test for 4 selected enzymes incubated from 30°C to 90°C for 1h

	Activit	y, % 📕	25	50	75	100	125
BHR01264	89.6	5.9	n.d.	n.d.	n.d.	n.d.	n.d. –
CBA10055	127.7	124.6	122.3	117.3	109.9	97.6	n.d.
GEN0105	86.4	50.7	3.7	n.d.	n.d.	n.d.	n.d.
MGS-MesE1	103.4	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
L	30	40	50 Temp	60 Deratur	70 e (°C)	80	90

 Comparison of the thermostability of CBA10055 to IS12 thermostable polyesterases at 70°C and 80°C

Protein backbone engineering of GEN0105: Ancestral Reconstruction

- Ancestral reconstruction approach aims to find protein with increased thermostability
- Phylogenetic tree was structured from past time
- Sequences selection based on sequence identity
- Two nodes with sequence identities of 42.1% (NODE152) and 51.8% (NODE186) to GEN0105 were selected

FirePort ^{ASR} : A Web Server for fully automated ancestral sequence reconstruction (Musil et al., 2021)

- Ancestral sequences were reconstructed using an evolutionary matrix.
- The wild-type protein GEN0105 was used as the input for ancestral reconstruction.

Protein engineering of Node152: Site-directed Mutagenesis

3-

Activity (U/mg) 2

Gen0105	1	MSETSSASALPAYARIVVDKRAPFIRAILYLILRYVIKRSM KPDA DILKLRAMQLRADQKYAHPA ADAVMTPVD
Gen0105 Node152	1	M ASFQARLFRQLLR MMRKFQSSNSNTSIQQQRKHLEKMARMF PVPPGVQIEQVN
Gen0105_Node186	1	MASW KASFQAKILNLLLRLVVKPMLRRPDPGDLN KIHQLRKHLARLDKRLAHPTPAGVTVEEVR
Gen0105	75	CDGVKANWITL PGARPERVIFYLHGGAWMFNFPRTYAAMLGRWARLLNARVLMVDYRLAPEHRYPAGANDCETAYRWLLA 1
Gen0105_Node152	55	IGGVPAEWITPKNASKSNKVILYLHGGGYVIGSPKTHRNLVSRLARASGMRVLVVDYRLAPEHPFPAALEDALAAYRWLLE 1
Gen0105_Node186	65	VGGVPCEWITAEENSKADRTILYLHGGGFVFHSPKTYRNFVSRLAKALGARVLMVDYRLAPEHPYPAAADDCLAAYRWLLE 1
		* * *
Gen0105	155	QG1D5KQIVIGGDSAGGNLTLTTLLRLKSANQPLPACAVALSPFVDFTLSSPSMITNEKIDPMFTLEAMLGLRPHYLDPQD 2
Gen0105_Node152	136	QGYSPENIVIAGDSAGGGLTLATLLKLREQGLPLPAAAVLLSPWTDLTCSGESFKTNAKRDPMLSAESLQQCAKYYCGNQD 2
Gen0105_Node186	146	QGIDFKQIVIAGDSAGGNLTLATLLRIRDAGLPMPACAVLLSPAIDFTLSGFSFQTNEKADPMFSAEALQVFRKLYLGGQD 2
Gon0105	236	
Gen0105 Node152	217	ELINVERSETEGETEGETEGETEGETEGETEGETEGETEGETEGETE
Gen0105_Node186	227	PTNPLUSPLEGDESGLPPMMEHUSSTETLEDDSVRLAEKAROAGVEVELOVWONMPHVEPTE HELDESKOALKOTVKETN 3
Senoros_Noderoo	221	acid base
Gen0105	316	SHTGWQA
Gen0105 Node152	298	QHLSQA
Gen0105 Node186	307	KHLSQAASTAANRPA

Sample	Substrate	Km (mM)	Vmax	
Gen0105	pNP-octanoate	0.8±0.1	11.3	
Node186	pNP-octanoate	0.64±0.2	12.7	
Node152	pNP-octanoate	0.15±0.05	1.4	
C183L	pNP-octanoate	0.11±0.03	4.1	

Υ	Kcat (s-1)	Kcat/Km (s-1	mM-1)	
	6.6±0.4	8.3		
	7.4±0.4	11.6		
	0.8±0.2	5.5	Highe	st
	2.4±0.3	21.8	efficie	ency

30°C 40°C 50°C 60°C 70°C 80°C 90°C

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Summary

Polyesterase activity is widespread in the family IV carboxylesterases from bacteria

Hairong Ma^{a,1}, Anna N. Khusnutdinova^{a,1}, Sofia Lemak^b, Tatyana N. Chernikova^a, Olga V. Golyshina^a, David Almendral^c, Manuel Ferrer^c, Peter N. Golyshin^a, Alexander F. Yakunin^{a,b,*}

- Characterised 25 enzymes from Carboxylesterase Family IV.
- Identified CBA10055 from Chloroflexota spp., a naturally occurring enzyme with remarkable thermostability (Tm = 91.9°C) and ~80% sequence identity to IS12.
- Discovered GEN0105 from the Evry (Paris) wastewater treatment plant, which demonstrated superior activity with plastic substrates but low thermostability, and lower sequence identity to IS12 (36%) making it a candidate for computational design.
- Engineered GEN0105_Node151_C183L, which improved thermostability while retaining wild-type activity.
- This study demonstrated that both natural gene library screening and computational design are effective strategies for developing industrially valuable enzymes.

Acknowledgments

Big thanks for my supervisors:

Prof. Peter Golyshin, Prof. Alexander Yakunin, Prof. Olga Golyshina Dr. Anna Khusnutdinova

And other team members:

Soshila Ramayah Tatyana Chernikova Gwion Williams Prabhakar Srivastava Daniel Chaplin

PRIFYSGOL BANGOR UNIVERSITY

School of Environmental and Natural Sciences

Canolfan Biotechnoleg Amgylcheddol Centre for Environmental Biotechnology

