

The RSVP Tool – <u>Representative Sample</u> <u>Volume Predictions for Monitoring</u> Microplastics

<u>Cross, Richard.</u>¹ Jürgens, Monika.¹ Roberts, Sarah.¹ Johnson, Andrew.¹ Davis, Craig.² Gouin, Todd.³

¹ UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB ² ExxonMobil Biomedical Sciences Inc., Annandale, NJ, USA ³ TG Environmental Research, UK

Introduction

Reported MP concentrations vary ~7 – 8 orders of magnitude (freshwater & marine systems)

Without robust methods (including sampling) - how do we design & execute relevant and representative monitoring programs with utility for risk assessment?

2. Sample Volume– A Critical Design Parameter

3. RSVP Tool Example Use Cases

Reviewing the available data

Literature reviewed though June 2020 including studies prior to 2004 introduction of the term "microplastic"

Studies quality scored according to Koelmans et al., 2019¹

¹**Koelmans** *et al.* **(2019)** Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. *Water Research*

Sampling volume – a critical parameter

UK Centre for Ecology & Hydrology

Cross *et al.* Ensuring <u>Representative Sample Volume predictions in microplastic monitoring. *Microplastics and Nanoplastics*</u>

Size can't explain it all...

We might expect particle size to scale with concentration as MPs fragment further

Across all data there is a signal of this, but weak and noisy

For grab samples the relationship seems non-existent

Are there artefacts & limitations in extrapolating from laboratory to environmentally-relevant scales?

"How can we be sure we have collected enough sample?" λ^k

- The *Poisson distribution* expresses the probability, P(k) of:
- 1) a given number of events, K (e.g. capturing a given number of microplastics)
- 2) occurring in a fixed interval (e.g. a fixed volume of water)
- 3) with the expectation of λ events in that given interval (e.g. the *expected* concentration of microplastics in that environment)

"Did I sample enough to detect <u>any</u> particles?"

We can predict the volume **v** needed to capture one microplastic particle in a water body with:

- an expected concentration *c*
- at a given significance level (α)

Relevance to risk assessment:

- Confidence in presence/absence assessment
- Sampling design for new studies

Example – Minimum Sample Volume Prediction

0.5 MP/L

Land MP/L

Significance	Probability of finding at least 1 MP	Minimum volume (L)	Significance	Probability of finding at least 1 MP	Minimum volume (L)
0.1	90%	4.61	0.1	90%	0.04
0.05	95%	5.99	0.05	95%	0.06
0.01	99%	9.21	0.01	99%	0.09

The lower the expected concentration, the greater the sample volume needed to reliably detect a single particle (at a given value of α)

Cross et al. Ensuring <u>Representative</u> <u>Sample</u> <u>V</u>olume predictions in microplastic monitoring</u>. *Microplastics and Nanoplastics*

How many particles <u>should</u> I plan to capture?

Depends on your aim!

- 10 particles: minimum to calculate sampling error with no replication (Tanaka et al., 2023)
- 50 particles: minimum to ensure sampling error is within +/- 30% of the concentration estimate (Tanaka et al., 2023)
- 96 particles: to allow for both total concentration <u>and</u> polymer identity assessment with 10% error (Cowger et al., 2024)

RSVP allows you to set your own **target**

"Are my two samples different?"

The same Poisson point process can be used to estimate the confidence intervals for samples without replication (Tanaka *et al.*, 2023)²

By comparing the overlap, **do samples differ** at given significance levels?

UK Centre for Ecology & Hydrology

² Tanaka *et al.*, 2023 An analytical approach to confidence interval estimation of river microplastic sampling. *Environmental Pollution*.

Example - Power Analysis using RSVP Tool

	Sample 1	Sample 2
Concentration in MP/L	1.00	10.00
Amount sampled in L	0.75	0.75
Total number of microplastics in sample	0.75	7.5
Shape parameter A (lower)	0.75	7.5
Shape parameter A (upper)	1.75	8.5
Rate parameter B	1	1
The lower value is	Sample 1	

0

To measure 10x difference, statistically ($\alpha = 0.05$):

0.75 L → 2.25 L (3x)

Cross et al. Ensuring <u>Representative</u> <u>Sample</u> <u>V</u>olume predictions in microplastic monitoring. *Microplastics and Nanoplastics*

Conclusions

Existing data finds sample volume(s) as a critical parameter

Confidence in MP concentration data in a mixed body of water can be quantified using Poisson distribution (assuming independent action)

The RSVP tool intends to be a pragmatic tool for researchers and risk assessors to both design new <u>and</u> evaluate existing monitoring data for microplastics in waters

UK Centre for Ecology & Hydrology

Publication to go live in 2025 at this DOI:

https://doi.org/10.1186/s4 3591-024-00109-2

Thank you to the team!

<u>**Cross, Richard.**</u>¹ Jürgens, Monika.¹ Roberts, Sarah.¹ Johnson, Andrew.¹ Davis, Craig.² Gouin, Todd.³

¹ UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB ² ExxonMobil Biomedical Sciences Inc., Annandale, NJ, USA ³ TG Environmental Research, UK