Mission Unflushable?

Understanding the Journey and Fate of 'Biodegradable' Wet Wipes in Rivers

Tom Allison Sustainable Plastics DTP Cardiff University

Environment and Plastics Research Network

Engineering and Physical Sciences Research Council

Why wet wipes?

Besley and Cassidy 2023. J. Env. Man. 303. 114256

Big push towards alternatives

BUT...

Wet wipe pollution continues!

Understanding the full life-cycle of wet wipes

- Manufacturing, properties, disposal, environmental behaviour and
 - fate of these new 'biodegradable' and 'flushable' wipes.

Science of the Total Environment 894 (2023) 164912

Do flushed biodegradable wet wipes really degrade?

Thomas Allison^{a,*}, Benjamin D. Ward^b, Michael Harbottle^c, Isabelle Durance^{a,*}

^a School of Biosciences and Water Research Institute, Cardiff University, Cardiff, CF10 3AX, United Kingdom
^b School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
^c School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom

Main conclusions

Mixed composition:

>50% of 'biodegradable' wipes contain low degradable plastic fibres

Consumer confusion + convenience:

 Inconsistent labelling + absent regulations + convenience = more incorrect disposal

Microfibres but no breakdown:

 Flushed cellulosic wipes fragment easily but complete molecular degradation is difficult

Environmental implications:

Blockages, ingestion, chemical leaching, and pollutant vector risks

Likely degradation mechanisms:

Research gaps

1. Flushed transport pathways to rivers and abundance

2. In-situ investigations of environmental degradation behaviour

3. Influence of personal care additives on environmental fate

4. Biophysical interactions and transfer capability within and across ecosystems

Predicting flushed wet wipe emissions into rivers

Water Research 268 (2025) 122733

Contents lists available at ScienceDirect Water Research journal homepage: www.elsevier.com/locate/watres

Predicting flushed wet wipe emissions into rivers

Thomas Allison^a, Benjamin D. Ward^b, Isabelle Durance^a, Michael Harbottle^{c,*}

^a School of Biosciences and Water Research Institute, Cardiff University, Cardiff, CF10 3AX, United Kingdom ^b School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom ^c School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom

- Quantification needed to understand environmental risks
- Achievable by integrating emissions modelling with existing data!

Emission pathways and parameters

Solid wipe scenarios:

Plastic and Cellulose

Microfibre scenarios:

 Plastic, Natural Cellulose, Regenerated Cellulose

	Total Mean
TOTAL (23%*)	2,500,000,000
Plastic containing (90%)	2,250,000,000
Non-plastic containing (10%)	250,000,000

Flushed wipes per capita	Annually (no./cap/y)
Non Plastic	3.69
Plastic	33.2
Both	36.89

Fibre type	Microfibre generation (#/g wipe) ^a	Mass generation (mg/g wipe) ^a	Total microfibre generation (#/wipe)*	Total mass generation (g/wipe)*
Natural	548,000	28	2603,000	0.133
	(163,000 -	(16-40)	(774,250 -	(0.076 - 0.19)
	933,000)		4431,750)	
Regenerated [†]	27,800	3.6	132,050	0.0171
	(15,000 -	(0.4 - 6.8)	(71,250 -	(0.0019 -
	40,600)		192,850)	0.0323)
Plastic	2940	0.73	13,965	0.0034
	(710 -	(0.24 - 1.22)	(3373 -	(0.0011 -
	5170)		24,558)	0.0058)

^a Values derived from Kwon et al. (2022).

* Average wipe mass when wet of 4.75 g derived from Durukan and Karadagli (2019).

[†] Originally non-natural but relabelled as regenerated based on Zambrano et al. (2020).

Also created a novel method to link populations to wastewaters based on local geomorphological, hydrological, and SO data

Allowed for more precise and spatiallyspecific emission estimates

UK:

Flushing rate of 23% SO spill rate of 2.6% Misconnection rate of 0.24%

EU:

Flushing rate of 29.5% SO spill rate of 1.97% Misconnection rate of 0.28%

Conclusions and recommendations

Both plastic and non-plastic flushed wipes pose significant pollution risks to wastewater and river systems at both macro and micro levels.

Addressing this issue requires:

 Manufacturing and consumer disposal behaviour as priority policy areas

Improved standards & transparency

- Universal labelling with realistic, diverse testing for biodegradability
- Full disclosure of materials and chemicals used in production

Careful assessment of alternatives

 Detailed life-cycle assessments before promoting plastic alternatives

Educating consumers

 More effective disposal and environmental impact education to address "out of sight, out of mind" behaviours. Also to understand socio-cultural reasons underpinning flushing behaviour.

Enforce accountability

• EPR compliance on inappropriate disposal and pollution/damage?

Questions?

Thomas Allison AllisonT2@Cardiff.ac.uk

