Marine Evidence Conference 2024

Selecting sites for coastal restoration using the 'Mini Buoy'

Dr Cai Ladd | c.j.t.ladd@swansea.ac.uk Bangor, 28th March 2024

Challenge establishing on the intertidal

Concept the B4, B4+, and Pendant Mini Buoys

Concept

- A plastic float, pinned to the ground contains an accelerometer data logger
- Acceleration along the y-axis can be used to interpret the start (1) and end (4) of an inundation event
- Persistent dip in acceleration indicates a current. The stronger the current, the greater the dip (2)
- Swaying back-and-forth in acceleration indicates a passing wave. The greater the variation, the larger the wave (3)

Calibration inundation status

• Search for abrupt shifts at start and end of inundation events and classify as **partial** inundation

Ladd et al. (submitted) Limnol Oceanogr Methods

Calibration current velocity

• Mean current velocity against mean y-axis tilt over 1-minute windows

Ladd et al. (submitted) Limnol Oceanogr Methods

Calibration wave orbital velocity and significant wave height

• Mean wave orbital velocity and significant wave height from Wave Directional Spectra analysis of ADV data, and correlated against 1-minute rolling standard deviation of acceleration in 10-minute windows

Analysis The Mini Buoy App 2.0

The Mini Buoy App	≡	Project: Downloads Target: Default_Target Reference: Default_Reference
	The Mini Buoy –	Designs -
∄ About	Mini Buoys are self-assembled research tools for measuring hydrodynamics along shallow coastal settings using drag-tilt technology and globally available materials. Refer to the Mini	There are three Mini Buoy designs to choose from.
Settings	Buoy Handbook for information on Mini Buoy assembly, deployment, and data analysis.	Select a Mini Buoy design to view attributes
) Data <	Open handbook	B4 •
≅ Hydrodynamics < © Target < Reference	This App allows users to analyse Mini Buoy data for comparing inundation duration, current velocity, and wave orbital velocity (the 'B4+' Mini Buoy only) statistics between reference (e.g., established vegetation) and target (e.g., potential restoration area) locations.	The original Mini Buoy design featured in Balke et al. (2021) that contains an MSR145 B4 acceleration data logger inside a self-standing centrifuge tube attached to an anchor via a fishing swivel. The B4 measures inundation duration and current velocity only.
Comparison	Inundation duration Current velocity Wave orbital velocity	
Geographical and Earth Sciences University of Glasgow 2021 - 2023	90 90 90 tit from borizontal time time time time	ground to sensor (15.5 cm) ground to sensor (5.5 cm) ground to sensor (5.5 cm)

Application current projects

Sediment flux to an unmanaged realignment site Heidi Burgess + Jonathan Dale

Viability of poldering to create saltmarsh in the UK

NRW + Jonathan Dale

Geomorphic health of Solway Coast habitats CLEARcoasts

Z. Noltii restoration, Barrow-in-Furness Cumbria Wildlife Trust

- Distance to the threshold plane positively correlated with **elevation**
- Straight line equation can be used to transform a **Digital Elevation Model** of the tidal flat into D2T values

more likely

dislodgement more likely

Summary

- Mini Buoys are a low-cost and open-source alternative to conventional hydrographic sensors
- Data can be used to predict the likelihood of coastal wetland establishment or erosion
- A valuable tool for community engagement in shaping coastal management planning

Diolch yn fawr.

