

Better Water Quality for Wales Conference 27-29 June, 2023 USW Exchange, Newport and Online

An Artificial Intelligence Model for Bathing Water Quality Early Warning Systems

M.Y. Lam and R. Ahmadian

Funded by the Interreg Atlantic Area Program, EERES4WATER project (EAPA 1058/2018)

Outline

- Need for real-time predictive models for bathing water quality early warning systems
- A novel Gamma-GA-ANN data-driven model
- Model testing at Swansea Bay, UK for predicting Enterococci and E Coli
- Conclusion

Public warning systems for bathing water quality

- Pathogen in bathing water cause public health problems
- Warning systems to inform the public about poor water quality
- Real-time prediction methods required
- This presentation introduces a novel predictive method

https://www.tourismforall.co.uk/news/read/2019/07/swansea-beach-adds-more-accessible-facilities-b77

Water quality prediction models

- Benefit aquaculture and water treatment
 - Evaluate environmental management strategies
 - Reduce energy use in water treatment: treat wastewater only to the required levels but not cleaner

uropean Regiona

Types of water quality models

- Artificial Intelligence (AI) models
 - Establish relationship between explanatory variables and bacteria concentrations from measured data
 - Require less computational power timely prediction

- Hydro-environmental models
 - Solve the flow and bacterial equations
 - Require (i) detail site knowledge, and (ii) high computational power
 - Provide understanding transport and fate of FIO

5

Linear and nonlinear data driven models

• Propose a Gamma test-Genetic Algorithm-ANN (Gamma-GA-ANN) model for full nonlinear variable identification and water quality prediction

Gamma-GA-ANN model

- Method outline:
 - Obtain data with sensors from the site
 - Apply Gamma-GA tests to identify key variables governing FIO concentrations
 - Predict FIO concentrations by ANN models
 - Inform water treatment operators and swimmers of impending poor water quality

Gamma - GA test

FIO concentration in coastal water: An input-system-output representation

- Variable identification: Gamma-GA test
 - The key variables are the variables that give the smallest Γ .
 - Conduct Gamma tests to all possible variable combinations
 → computationally demanding.
 - Genetic Algorithm (GA) is employed

Minimum Γ ?

Rainfall

Qriver3

smart coasts

Qriver

Salinity

Q_{river2}

Turbidity

Tide

Radiation

8

Artificial Neural Network

Input layer

 w_{II}

W12

 W_{22}

w

 W_{2i}

• Feed forward network

Input

- One hidden layer was sufficient in our study
- Increased the number of hidden layer nodes stepwise and stop when overfitting occurs

• Performance function: mean square error (MSE)

- Initial weights are random
- 300 runs for each network to ensure optimal results

Hidden layer

 b_{11}

b12

 b_{13}

Output layer

 b_{21}

Output

Field data from Swansea Bay, UK

- Popular beaches such as Swansea Beach
- Sampling period: bathing season of 2011
- FIO Sampling interval: 30 min
- Total number of data:
 - 204 variables (including timelagged data) x 949 time instants = 193596 data
- Remove redundant variables with collinearity test:
 - 23 variables were retained

Variables selected by Gamma-GA test

- Tide level and Wind were always selected
 - Consistent with previous mechanistic and AI model results.
- Streamflow was included by the Gamma-GA test for *Enterococci* only
 - River flows are known to be important FIO sources, but
 - Flow rate alone does not fully characterize the effect of rivers

	Enterococci		E Coli		
Variables identified from the correlation analysis	Gamma test	Stepwise linear analysis	Gamma test	Stepwise linear analysis	
Streamflow [lag 10 h]	1	0	0	1	
Mumbles Level [lag 2 h]	0	0	0	0	
Mumbles Level [lag 4 h]	1	0	1	1	
Mumbles Level [lag 6 h]	1	1	1	0	
Global Radiation [lag 2 h]	0	1	0	1	
Global Radiation [lag 4 h]	0	0	1	0	
Global Radiation [lag 6 h]	1	0	0	0	
Temperature [lag 2 h]	1	0	0	1	
Temperature [lag 6 h]	1	0	1	0	
Relative Humidity [lag 2 h]	0	1	0	1	
Relative Humidity [lag 8 h]	1	0	1	0	
Cum. of Rain [lag 2 h]	0	0	0	0	
Cum. of Rain [lag 3 h]	0	0	0	0	
Cum. of Rain [lag 4 h]	0	0	0	0	
Cum. of Rain [lag 6 h]	0	0	0	0	
Cum. of Rain [lag 8 h]	0	0	0	0	
Cum. of Rain [lag 10 h]	0	0	0	0	
Cum. of Rain [lag 12 h]	0	1	0	0	
Wind Speed N [lag 2 h]	0	1	1	1	
Wind Speed N [lag 6 h]	0	0	1	0	
Wind Speed N [lag 10 h]	0	1	0	1	
Wind Speed E [lag 2 h]	1	1	1	1	
Wind Speed E [lag 10 h]	0	1	0	0	

M-test

- Determine the necessary data length for successful AI model development
 - Gamma-GA test selected variables achieved better |Γ| when data length exceeds 500.
- The data were divided into training, validation and testing
 sets. The training set had more than 500 data points.

Model Comparison

		Key variable identification		
		Gamma-GA test	Stepwise linear (SL) regression	
Prediction model	ANN	GG-ANN model	SL-ANN model	
	SL	GG-Linear model	SL-Linear model	

- Models that use ANN gave a superior predictive performance compared to linear regression models
- Gamma-GA-ANN model gave better prediction results for *Enterococci*

		Realizatio	on 1	_		
	MSE			R^2		
	Training	Validation	Testing	Training	Validation	Testing
GG-ANN	0.0074	0.0157	0.0214	0.8369	0.6654	0.5361
SL-ANN	0.0210	0.0232	0.0260	0.5400	0.5079	0.4357
GG-Linear	0.0357		0.0399	0.2224		0.1348
SL-Linear	0.0	0311	0.0328	0.3235		0.2883
Realization 2						
		MSE				
	Training	Validation	Testing	Training	Validation	Testing
GG-ANN	0.0134	0.0172	0.0227	0.7177	0.6025	0.4993
SL-ANN	0.0257	0.0194	0.0295	0.4542	0.5518	0.3611
GG-Linear	0.0368		0.0352	0.2021		0.2246
SL-Linear	0.0312		0.0322	0.3229		0.2895
Realization 3						
		MSE		R ²		
	Training	Validation	Testing	Training	Validation	Testing
GG-ANN	0.0071	0.0188	0.0199	0.8292	0.6457	0.6156
SL-ANN	0.0192	0.0243	0.0225	0.5385	0.5418	0.5699
GG-Linear	0.0359		0.0393	0.1944		0.2403
SI-Linear	0.0320		0 0293	0.2812		0 4337

Enterococci

Model Comparison

- GG-ANN model did not always give better prediction for *E Coli* compared to SL-ANN
- Explanation:
 - This *Enterococci* data has more extreme values (17.8% of the data) compared to the *E Coli* data (8.9% of the data); and
 - GG-ANN model is better for capturing extreme values

E Coli

		Realizatio	on 1				
	MSE			R ²			
	Training	Validation	Testing	Training	Validation	Testing	
GG-ANN	0.0067	0.0159	0.0214	0.8396	0.6077	0.5312	
SL-ANN	0.0096	0.0154	0.0174	0.7705	0.6198	0.6177	
GG-Linear	0.0325		0.0342	0.2166		0.2482	
SL-Linear	0.0297 0.0305		0.2838		0.3290		
Realization 2							
	MSE			R ²			
	Training	Validation	Testing	Training	Validation	Testing	
GG-ANN	0.0119	0.0178	0.0205	0.7208	0.5939	0.4801	
SL-ANN	0.0113	0.0135	0.0188	0.7370	0.6914	0.5221	
GG-Linear	0.0331		0.0315	0.2294		0.1996	
SL-Linear	0.0299		0.0295	0.3041		0.2484	
Realization 3							
	MSE			R ²			
	Training	Validation	Testing	Training	Validation	Testing	
GG-ANN	0.0073	0.0146	0.0196	0.8066	0.6747	0.6337	
SL-ANN	0.0091	0.0155	0.0186	0.7582	0.6539	0.6501	
GG-Linear	0.0	0.0321		0.1873		0.3181	
SL-Linear	0.0	0297	0.0310	0.2501		0.4167	

Performance table under EU rBWD classification

Gamma-GA-ANN models

SL-ANN models

Observed

Specificity Sensitivity

Poor

8

3

27%

96%

33%

93%

Not poor

172

6

97%

- GG-ANN model improved the sensitivity for FIOs
 - Consistent with previous literature that nonlinear model captures better the extreme values

E Coli, Realization 3, testing set

Not poor

Poor

Predicted

Specificity Sensitivity

Observed

Poor

6

5

45%

97%

38%

93%

Not poor

170

8

96%

Not poor

Poor

Predicted

Conclusion

• A data-driven GG-ANN model has been developed for FIO concentration prediction without unnecessary input variables

- GG-ANN model performance was evaluated at Swansea Bay, UK
 - Better predicted *Enterococci* for all three sets and most of the training sets for *E Coli*
 - Better in identifying events of poor water quality
 - Suitable for bathing water warning applications

https://www.tourismforall.co.uk/news/read/20 19/07/swansea-beach-adds-more-accessiblefacilities-b77

Better Water Quality for Wales Conference 27-29 June, 2023 USW Exchange, Newport and Online

Thank you for listening

- Contact
 - M. Y. Arthur Lam: <u>lamM7@cardiff.ac.uk</u>
 - R. Ahmadian: <u>AhmadianR@cardiff.ac.uk</u>

