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• Need for real-time predictive models for bathing water quality early 
warning systems

• A novel Gamma-GA-ANN data-driven model

• Model testing at Swansea Bay, UK for predicting Enterococci and E Coli

• Conclusion

Outline
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https://www.tourismforall.co.uk/news/read/2019/07/swansea-beach-adds-more-accessible-facilities-b77

• Pathogen in bathing water 
cause public health 
problems

• Warning systems to inform 
the public about poor water 
quality

• Real-time prediction 
methods required

• This presentation 
introduces a novel 
predictive method

Is the water quality OK?
• Culture-based method: 18-24 hr
• Rapid detection method: 6 hr

STOPGO

Public warning systems for bathing water quality
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• Benefit aquaculture and water treatment
• Evaluate environmental management strategies

• Reduce energy use in water treatment: treat wastewater only to the required 
levels but not cleaner 

Aquaculture

Water quality prediction models

Under-
treatment

Optimal Over-
treatment

Energy use

Wastewater Treatment 
Works (WWTW)

Figure courtesy: 
Veolia water

effluent
Ocean
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• Artificial Intelligence (AI) models
• Establish relationship between 

explanatory variables and bacteria 
concentrations from measured data

• Require less computational power –
timely prediction

• Hydro-environmental models
• Solve the flow and bacterial equations

• Require (i) detail site knowledge, and 
(ii) high computational power

• Provide understanding transport and 
fate of FIO

Types of water quality models
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• Propose a Gamma test-Genetic Algorithm-ANN (Gamma-GA-ANN) model 
for full nonlinear variable identification and water quality prediction

x

y

Stepwise multi-linear regressions (MLRs): 
• Capable of identifying key variables
• Do not account for possible nonlinear 

relationships

Artificial Neural Networks (ANNs)
• Capture nonlinear relationships 
• May be coupled with Stepwise MLRs, but the 

approach is not fully nonlinear
• Identify key variables through cross-validation 

approach is computationally demanding

Linear and nonlinear data driven models
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• Method outline:
• Obtain data with sensors from the site

• Apply Gamma-GA tests to identify key variables governing FIO concentrations

• Predict FIO concentrations by ANN models

• Inform water treatment operators and swimmers of impending poor water quality

Gmin

Gamma-GA-ANN model
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• Variable identification: Gamma-GA test
• The key variables are the variables that give the smallest G.

• Conduct Gamma tests to all possible variable combinations 
→ computationally demanding. 

• Genetic Algorithm (GA) is employed

Unknown underlying 
nonlinear model

Gamma test does not evaluate the 
underlying model

Salinity

Minimum G?

Gamma - GA test

Output + noise

Gamma test estimates the 
noise variance = G

Input

FIO concentration in coastal water: An input-system-output representation 
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Artificial Neural Network
• Feed forward network

• Initial weights are random
• 300 runs for each network to 

ensure optimal results

• One hidden layer was sufficient 
in our study

• Increased the number of hidden 
layer nodes stepwise and stop 
when overfitting occurs

• Performance function: 
mean square error (MSE)
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• Popular beaches such as 
Swansea Beach

• Sampling period: bathing season 
of 2011

• FIO Sampling interval: 30 min

• Total number of data:
• 204 variables (including time-

lagged data) x 949 time instants = 
193596 data

• Remove redundant variables 
with collinearity test:
• 23 variables were retained

Field data from Swansea Bay, UK
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Variables identified from the 

correlation analysis

Enterococci E Coli

Gamma test

Stepwise 

linear 

analysis

Gamma test

Stepwise 

linear 

analysis
Streamflow [lag 10 h] 1 0 0 1

Mumbles Level [lag 2 h] 0 0 0 0
Mumbles Level [lag 4 h] 1 0 1 1
Mumbles Level [lag 6 h] 1 1 1 0

Global Radiation [lag 2 h] 0 1 0 1
Global Radiation [lag 4 h] 0 0 1 0
Global Radiation [lag 6 h] 1 0 0 0

Temperature [lag 2 h] 1 0 0 1
Temperature [lag 6 h] 1 0 1 0

Relative Humidity [lag 2 h] 0 1 0 1
Relative Humidity [lag 8 h] 1 0 1 0

Cum. of Rain [lag 2 h] 0 0 0 0
Cum. of Rain [lag 3 h] 0 0 0 0
Cum. of Rain [lag 4 h] 0 0 0 0
Cum. of Rain [lag 6 h] 0 0 0 0
Cum. of Rain [lag 8 h] 0 0 0 0

Cum. of Rain [lag 10 h] 0 0 0 0
Cum. of Rain [lag 12 h] 0 1 0 0
Wind Speed N [lag 2 h] 0 1 1 1
Wind Speed N [lag 6 h] 0 0 1 0

Wind Speed N [lag 10 h] 0 1 0 1
Wind Speed E [lag 2 h] 1 1 1 1

Wind Speed E [lag 10 h] 0 1 0 0

Variables selected by Gamma-GA test
• Tide level and Wind were always 

selected
• Consistent with previous mechanistic 

and AI model results.

• Streamflow was included by the 
Gamma-GA test for Enterococci only
• River flows are known to be important 

FIO sources, but
• Flow rate alone does not fully 

characterize the effect of rivers
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• Determine the necessary data 
length for successful AI model 
development
• Gamma-GA test selected 

variables achieved better Γ
when data length exceeds 500.

• The data were divided into 
training, validation and testing 
sets. The training set had 
more than 500 data points.
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• Models that use ANN gave a 
superior predictive performance 
compared to linear regression 
models

• Gamma-GA-ANN model gave 
better prediction results for 
Enterococci

Key variable identification

Gamma-GA test
Stepwise linear 
(SL) regression

Prediction 
model

ANN GG-ANN model SL-ANN model

SL GG-Linear model SL-Linear model

Model Comparison
Realization 1
MSE R2

Training Validation Testing Training Validation Testing
GG-ANN 0.0074 0.0157 0.0214 0.8369 0.6654 0.5361
SL-ANN 0.0210 0.0232 0.0260 0.5400 0.5079 0.4357
GG-Linear 0.0357 0.0399 0.2224 0.1348
SL-Linear 0.0311 0.0328 0.3235 0.2883

Realization 2
MSE R2

Training Validation Testing Training Validation Testing
GG-ANN 0.0134 0.0172 0.0227 0.7177 0.6025 0.4993
SL-ANN 0.0257 0.0194 0.0295 0.4542 0.5518 0.3611
GG-Linear 0.0368 0.0352 0.2021 0.2246
SL-Linear 0.0312 0.0322 0.3229 0.2895

Realization 3
MSE R2

Training Validation Testing Training Validation Testing
GG-ANN 0.0071 0.0188 0.0199 0.8292 0.6457 0.6156
SL-ANN 0.0192 0.0243 0.0225 0.5385 0.5418 0.5699
GG-Linear 0.0359 0.0393 0.1944 0.2403
SL-Linear 0.0320 0.0293 0.2812 0.4337

Enterococci
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Model Comparison
• GG-ANN model did not always 

give better prediction for E Coli
compared to SL-ANN

• Explanation: 
• This Enterococci data has more 

extreme values (17.8% of the data) 
compared to the E Coli data (8.9% of 
the data); and

• GG-ANN model is better for 
capturing extreme values

E Coli
Realization 1
MSE R2

Training Validation Testing Training Validation Testing
GG-ANN 0.0067 0.0159 0.0214 0.8396 0.6077 0.5312
SL-ANN 0.0096 0.0154 0.0174 0.7705 0.6198 0.6177
GG-Linear 0.0325 0.0342 0.2166 0.2482
SL-Linear 0.0297 0.0305 0.2838 0.3290

Realization 2
MSE R2

Training Validation Testing Training Validation Testing
GG-ANN 0.0119 0.0178 0.0205 0.7208 0.5939 0.4801
SL-ANN 0.0113 0.0135 0.0188 0.7370 0.6914 0.5221
GG-Linear 0.0331 0.0315 0.2294 0.1996
SL-Linear 0.0299 0.0295 0.3041 0.2484

Realization 3
MSE R2

Training Validation Testing Training Validation Testing
GG-ANN 0.0073 0.0146 0.0196 0.8066 0.6747 0.6337
SL-ANN 0.0091 0.0155 0.0186 0.7582 0.6539 0.6501
GG-Linear 0.0321 0.0363 0.1873 0.3181
SL-Linear 0.0297 0.0310 0.2501 0.4167
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Specificity: % of NOT false alarm
Sensitivity: % of poor water quality identified
Overall accuracy: % of correct identification 

Observed
Not poor Poor

P
re

d
ic

te
d

Not poor 146 11 93%

Poor 14 18 56%

91% 62% 87%

Gamma-GA-ANN models

Observed
Not poor Poor

P
re

d
ic

te
d

Not poor 155 22 88%

Poor 5 7 58%

97% 24% 86%

SL-ANN models

Enterococci, Realization 1, testing set

Specificity Sensitivity Specificity Sensitivity

Observed
Not poor Poor

P
re

d
ic

te
d

Not poor 170 6 97%

Poor 8 5 38%

96% 45% 93%

Observed
Not poor Poor

P
re

d
ic

te
d

Not poor 172 8 96%

Poor 6 3 33%

97% 27% 93%

E Coli, Realization 3, testing set

Specificity Sensitivity Specificity Sensitivity

Gamma-GA-ANN models SL-ANN models

• GG-ANN model 
improved the 
sensitivity for FIOs
• Consistent with 

previous literature that 
nonlinear model 
captures better the 
extreme values

Performance table under EU rBWD classification
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• A data-driven GG-ANN model has been developed for FIO concentration 
prediction without unnecessary input variables

Conclusion

• GG-ANN model performance was evaluated at 
Swansea Bay, UK
• Better predicted Enterococci for all three sets and 

most of the training sets for E Coli

• Better in identifying events of poor water quality

• Suitable for bathing water warning applications
https://www.tourismforall.co.uk/news/read/20
19/07/swansea-beach-adds-more-accessible-
facilities-b77
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• Contact
• M. Y. Arthur Lam: lamM7@cardiff.ac.uk

• R. Ahmadian: AhmadianR@cardiff.ac.uk
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