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Outline

* Need for real-time predictive models for bathing water quality early
warning systems

* A novel Gamma-GA-ANN data-driven model
* Model testing at Swansea Bay, UK for predicting Enterococci and E Coli

* Conclusion
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Public warning systems for bathing water quality

* Pathogen in bathing water
cause public health
problems

* Warning systems to inform
the public about poor water
quality |

* Real-time prediction
methods required

* This presentation
introduces a novel
predictive method

https://www.tourismforall.co.uk/news/read/2019/07/swansea-beach-adds-more-accessible-facilities-b77
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Water quality prediction models

* Benefit aquaculture and water treatment
e Evaluate environmental management strategies
 Reduce energy use in water treatment: treat wastewater only to the required

levels but not cleaner

‘Aquaculture
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Wastewater Treatment
Works (WWTW)

Under- Optimal Over-

/ Energy use
-

Figure courtesy:
Veolia water
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Types of water quality models

* Artificial Intelligence (Al) models * Hydro-environmental models

 Establish relationship between * Solve the flow and bacterial equations
explanatory variables and bacteria « Require (i) detail site knowledge, and
concentrations from measured data (i) high computational power
* Require less computational power — e Provide understanding transport and
timely prediction fate of FIO
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Linear and nonlinear data driven models

Stepwise multi-linear regressions (MLRs):
Capable of identifying key variables
Do not account for possible nonlinear
relationships

Artificial Neural Networks (ANNs)
e Capture nonlinear relationships
May be coupled with Stepwise MLRs, but the
/ X approach is not fully nonlinear
* |dentify key variables through cross-validation
approach is computationally demanding

»
|

X

* Propose a Gamma test-Genetic Algorithm-ANN (Gamma-GA-ANN) model
for full nonlinear variable identification and water quality prediction
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Gamma-GA-ANN model

* Method outline:

Obtain data with sensors from the site

Apply Gamma-GA tests to identify key variables governing FIO concentrations
Predict FIO concentrations by ANN models

Inform water treatment operators and swimmers of impending poor water quality

f \ / \ Input layer Hidden layer Output layer
Measured data Gamma-GA test

q% Output

Output variance,
o
i
g
E ]
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ANN model Informing stakeholders
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Gamma - GA test

FIO concentration in coastal water: An input-system-output representation

4 - 4 R
L A~/ Unknown underlying
I N/ Ve nonlinear model

\_ Input \ \ \_Output +noise |

Gamma test does\ not evaluate the
underlying model

Gamma test estimates the
noise variance =T"

* Variable identification: Gamma-GA test Minimum I°?
* The key variables are the variables that give the smallest I

Tide

* Conduct Gamma tests to all possible variable combinations . Rainal
—> computationally demanding. ez Salinity
. . . \ Zoh
* Genetic Algorithm (GA) is employed pedi®*
TUrbidity
Quver
eereshawarer g:rl:;e';e :e?g;n%ion ggﬁ?g"[wv\(;l;]:[ s:jﬁgoasts 8




Artlfl Cla | N e u ra | N etWO rk * One hidden layer was sufficient

e Feed forward network in our study

* Increased the number of hidden
Input layer Hidden IayerM layer nodes stepwise and stop
when overfitting occurs
b | 4>
Output
45— \

s ’ e Performance function:
mean square error (MSE)

Input

¥\ 01

3/

* |nitial weights are random
* 300 runs for each network to
ensure optimal results
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Field data from Swansea Bay, UK

* Popular beaches such as
Swansea Beach

United Kingdom el River Neath
7

* Sampling period: bathing season
of 2011

* FIO Sampling interval: 30 min

» Total number of data: R e
. . . . Clyne River” PR S
* 204 variables (including time- Bmujolev. _ Rivgragan
lagged data) x 949 time instants = B2 / IS
193596 data Washinghouse

Legend

Brook ; : g
. Designated sampling point

e Remove redundant variables
with collinearity test:

e 23 variables were retained

Meteorological station

Tide station

<1mo0

River discharge station
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Variables selected by Gamma-GA test

. . | _Enterococci | _EColi
o T| d e Ieve a n d Wl n d We re a IWayS Variables identified from the Stepwise Stepwise

correlation analysis Gamma test linear Gamma test linear
selected
Streamflow [lag 10 h]

analysis analysis

0 1
* Consistent with previous mechanistic Mumbles Level [lag 2 h]
Mumbles Level [lag 4 h]

and Al model resultS. Mumbles Level [lag 6 hl
Global Radiation [lag 2 h]
Global Radiation [lag 4 h]
Global Radiation [lag 6 h]

* Streamflow was included by the Temperature [lag 2 ]

L EEOTEY IE

Gamma-GA test for Enterococci only ~BESEITTTEETIEEL

Relative Humidity [lag 8 h]

* River flows are known to be important Curn. of Rain [l2g 2 )
um. of Rain [lag 3 h]

FIO Sourcesl but Cum. of Rain [lag 4 h]

Cum. of Rain [lag 6 h]

* Flow rate alone does not fully Lot Lt

characterize the effect of rivers Cum. of Rain [lag 12 h]
Wind Speed N [lag 2 h]
Wind Speed N [lag 6 h]
Wind Speed N [lag 10 h]
Wind Speed E [lag 2 h]
Wind Speed E [lag 10 h]
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M-test
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—Gamma-GA

Stepwise-MLR

 Determine the necessary data
length for successful Al model

development
* Gamma-GA test selected
variables achieved better [T
when data length exceeds 500.

* The data were divided into

200 400 600 800
Data length

B European Union
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training, validation and testing
00 gets, The training set had
more than 500 data points.
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Model Comparison

Key variable identification

Enterococci

Realization 1

MSE R?
Training  Validation Testing Training Validation  Testing
0.0074 0.0157 0.0214  0.8369 0.6654 0.5361
SL-ANN 0.0210 0.0232 0.0260  0.5400 0.5079 0.4357
GG-Linear 0.0357 0.0399 0.2224 0.1348
SL-Linear 0.0311 0.0328 0.3235 0.2883

Realization 2

MSE R2
Training Validation Testing Training Validation  Testing
0.0134 0.0172 0.0227 0.7177 0.6025 0.4993

Stepwise linear

-GA .
Gamma-GA test (SL) regression

GG-ANN model SL-ANN model

Prediction

model
SL

GG-Linear model SL-Linear model

e VI Od e | st h at use ANN gave a SL-ANN 0.0257  0.0194 0.0295 04542 05518  0.3611
. L GG-Linear 0.0368 0.0352 0.2021 0.2246
Superior pre d Ictive pe rfO Fmance SL-Linear 0.0312 0.0322 0.3229 0.2895

Realization 3

MSE R?
Training  Validation Testing Training Validation  Testing
0.0071 0.0188 0.0199 0.8292 0.6457 0.6156

compared to linear regression
models

SL-ANN 0.0192  0.0243  0.0225 0.5385  0.5418  0.5699
GG-Linear 0.0359 0.0393 0.1944 0.2403
o G amma -G A- A N N Mo d e | gave SL-Linear 0.0320 0.0293 0.2812 0.4337
better prediction results for
Enterococci
European Union 1872 PRIFYSGOL m
e ] : 28 smart coasts 13
cerghowarer e e EIABERYSTWYTH meLe



Model Comparison

* GG-ANN model did not always
give bEtter pr8diCti0n fOr E CO/I 00067 00159 00214 08396  0.6077  0.5312
SL-ANN 0.0096 00154 00174 07705 06198  0.6177
com pa FEd to S L-AN N GG-Linear 0.0325 0.0342 0.2166 0.2482

SL-Linear 0.0297 0.0305 0.2838 0.3290
Realization 2
MSE R?

Training Validation Testing Training Validation  Testing

* Explanation:
0.0119 0.0178 0.0205 0.7208 0.5939 0.4801

* This Enterococci data has more
SL-ANN 0.0113 0.0135 0.0188 0.7370 0.6914 0.5221
eXtreme Values (178% Of the data) GG-Linear 0.0331 0.0315 0.2294 0.1996

E Coli

Realization 1
MSE R2
Training  Validation Testing Training Validation  Testing

Compa red to the E Coli data (8 9% Of SL-Linear 0.0299 0.0295 0.3041 0.2484
MSE R?
] Training Validation Testing Training Validation  Testing
* GG-ANN model is better for
. SL-ANN 0.0091 0.0155 0.0186 0.7582 0.6539 0.6501
capturing extreme values GG-Linear 0.0321 0.0363 0.1873 0.3181

Realization 3
the data); and
0.0073 00146 0.0196 0.8066 06747  0.6337
SL-Linear 0.0297 0.0310 0.2501 0.4167
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Performance table under EU rBW

D classification

Gamma-GA-ANN models

| | Observed |
Not poor  Poor

8 Not poor 146 11 93%

(S

§

5 Poor 14 18 56%

91% 62% 87%
Specificity Sensitivity

Enterococci, Realization 1, testing set

SL-ANN models

| | Observed
] Not poor  Poor
g Not poor 155 22 88%
5}
%
= Poor 5 7 58%

97% 24% 86%
Specificity Sensitivity

* GG-ANN model
improved the
sensitivity for FIOs

e Consistent with
previous literature that
nonlinear model

captures better the

Gamma-GA-ANN models

| Observed
] Not poor  Poor
g Not poor 170 6 97%
(8]
-
5 Poor 8 5 38%

96% 45%  93%
Specificity Sensitivity

E Coli, Realization 3, testing set

SL-ANN models

1 |  Observed |
] Not poor  Poor
g Not poor 172 8 96%
(8]
5
5 Poor 6 3 33%

97% 27%  93%
Specificity Sensitivity

extreme values

Specificity: % of NOT false alarm
Sensitivity: % of poor water quality identified
Overall accuracy: % of correct identification
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Conclusion

* A data-driven GG-ANN model has been developed for FIO concentration
prediction without unnecessary input variables

Sensors: Gamma-GA test: Key ANN model: FIO Inform stakeholders
Measurement variable identification concentration prediction

* GG-ANN model performance was evaluated at
Swansea Bay, UK

* Better predicted Enterococci for all three sets and
most of the training sets for E Coli

* Better in identifying events of poor water quality
 Suitable for bathing water warning applications

ismforall.co.uk/news/read/20
19/07/swansea-beach-adds-more-accessible-

facilities-b77
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