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“Eutrophication is the process by which an entire body of water, or
parts of it, becomes progressively enriched
with minerals and nutrients, particularly nitrogen and phosphorus.”
Wikipedia

“This is when there is too much nutrient in rivers, lakes/reservoirs,
estuaries or the sea, causing excessive growth of algae and plants.
This adversely affects the quality of the water and our uses of it, as
well as damaging the local ecology.”
Environment Agency

"nutrient-induced increase in phytoplankton productivity”
Chapin, 2011

“Eutrophication is the result of excessive enrichment of water with
nutrients, which may accelerate the growth of algae (phytoplankton)
in the water column.”

OSPAR

“Eutrophication is characterized by excessive plant and algal
growth due to the increased availability of one or more
limiting growth factors needed for photosynthesis”
Schindler 2006




Eutrophication and Harmful Algal Blooms
What is an algal bloom?
The Phosphorus Mindset

1970s-1990s — phosphate rich discharges driving HABs —
high media attention

Response to enrichment with P required other factors to
combine

Nutrients and environmental variables — cyanobacterial
dominance

Perturbation to switch between bi-stable states (Scheffer et
al. 2001; Norfolk Broads etc.)

Figures from Perkins and Underwood, 2001
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Catastrophic shifts in ecosystems

Marten Scheffer*, Steve Carpentert, Jonathan A. Foley:, Carl Folke$ & Brian Walker!|
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All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is
usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid
lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse
events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative
state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.
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Can we reduce Phosphorus any further and if we do...
will it make a difference?

SRP reduction NO5-N reduction
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Relative changes in nutrients are key
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Perkins and Slavin et al. 2019



Mitrate mg -1

Chl a mg I

210 9

1.0 1

0.5 9

0.0

100 -

gl 4

&l o

0 1

20 -

]

— ()15
= 2016

Io afl in

5P

5P2

1 si I

SP3 GP4 5P5

D
ﬁﬁ‘ﬁ

=ample Point

SPE5

SP4

Perkins and Slavin et al. 2019

0.E

0.6

04

nz

n.o

abda

4L

3000

2000

1000

TP mg -1

Cell count



TN:TP and 2-MIB ng ' (log scale)

TH:TP and Geosmin ng I (log scale)
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Nutrients and functional control

GAM model results for reservoir 1 with geoA:16S copy numbers mL ' as the
response variable. Using summer 2019 as the reference level for seasonal

comparison.
Parametric coefficients Estimate standard error p value
Autumn 2019 0.000 0.499 0.999
Winter 2019 —3.733 0.960 < 0.001 ***
Summer 2020 2.073 0.461 < 0.001 ***
Winter 2020 0.732 0.687 0.297
Mean Temperature —0.405 0.093 < 0.001 ***
Sulphate 1.338 0.162 < 0.001 ***
Dissolved Reactive Silicate —1.465 3.128 < 0.001 ***
Dissolved Iron 19.325 3.128 < 0.001 **=
Smooth terms edf F p value
2.009 39.040 < 0.001 ***
3.000 11.240 < 0.001 ***
2.315 22.140 < 0.001 ***

Note: Variables with significant influences are indicated by: . p < 0.1,.
* p < 0.05, ** p < 0.01, *** p < 0.001.

Hooper et al. 2023



Nutrient ratios and GeoA gene copy level
(GeoA gene for synthesis of T&O metabolite of Geosmin)
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Nutrient ratios change community structure and cyanobacteria
dominance/productivity

Relative abundance
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Proteobacteria
Bacteroidota
Planctomycetota
Actinobacteriota
Verrucomicrobiota
Cyanobacteria
Patescibacteria
Firmicutes
Dependentiae
Campilobacterota .
Gemmatimonadota .
Armatimonadota
Deinococcota
Bdellovibrionota [
Chloroflexi

SAR324_clade(Marine_group_B)

Fusobacteriota
Acidobacteriota
Desulfobacterota
Myxococcota
LCP-89
Margulisbacteria
Elusimicrobiota
Sval485
MBNT15
Nitrospirota
NB1-

WpPs-2
Nitrospinota
WOR-1

Fibrobacterota
Calditrichota
Sumerlaeota
Spirochaetota
Latescibacterota
Zixibacteria

ws2
Synergistota
PAUC34f

NKB15
Methylomirabilota
Hydrogenedentes
FCPU428

Watson et al., in prep



Eutrophication story isn’t just phosphorus and HABs

* Need to think of holistic eutrophication, relative abundance of
nutrients, proportional changes in nutrients

* This leads to questions on how / when / what to monitor as well
as how to analyse and interpret data.

* This has consequences for regulatory nutrient levels and
permissive levels in discharges etc.
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