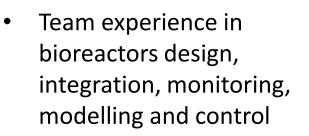

Nutrient Recovery and Water Quality Based Novel Analytical Tools

Prof. Sandra Esteves

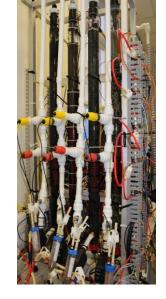

sandra.esteves@southwales.ac.uk

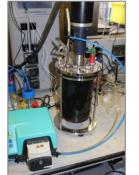
THE WALES CENTRE OF EXCELLENCE

USW Team's Expertise & Facilities

- Novel process development in the lab (1-100 l), pilot (200 l -30 m³) and full scale experience (up to 7000 m³)
- Pure and mixed culture reactor facilities
- C1 Gases fermentation lab facilities
- 450 m² floor 13 labs
- Extensive suite of analytical equipment – Chemical and Molecular Biology

C1 Gases Fermentation Lab Facilities







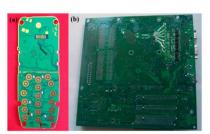
Biotechnologies Able to Address Challenges

CO₂ / Ammonia Emissions

Power Grid Constraint

Large Scale Energy Storage

Decarbonise Gas/Fuel



Alternative Protein

Fertilisers

Metal recovery via bioleaching

Resource Recovery

© University of South Wales

Recycling of (Bio)Plastics

Advanced Process Monitoring

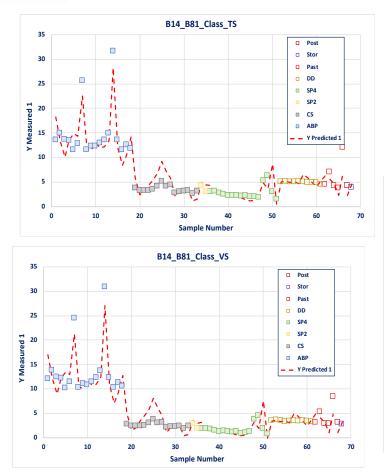
High Value molecule recovery

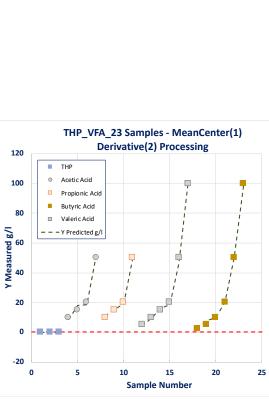
© University of South Wales

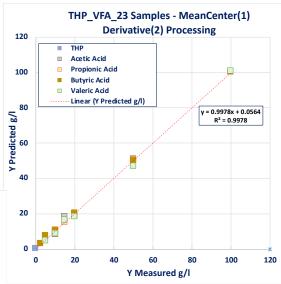
Development Fund

A Biorefining Centre of Excellence for Wales July 2019 – Dec 2022

From plants to products O blanhigion i gynhyrchion



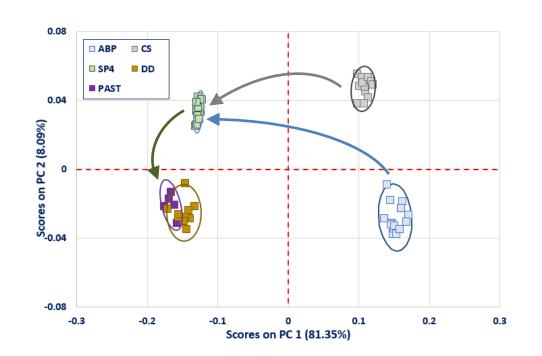



Swansea University Prifysgol Abertawe University of South Wales Prifysgol De Cymru

Real-time Solids and VFA Content using FT-NIR

Vace recovery of the second se

wedge Economy Skills Scholarships



PUBLIC / CYHOEDDUS

Classification of Anaerobic Digestion Matrices

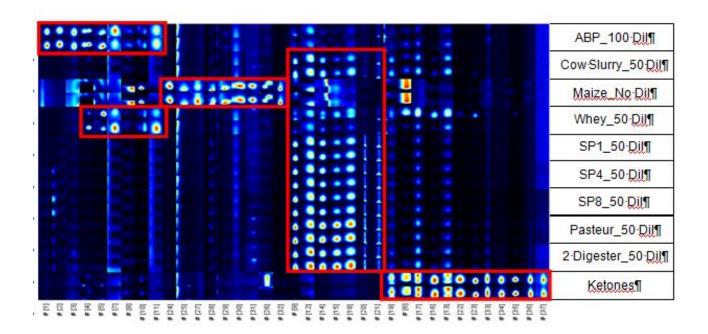
Feedstocks and Products

Development of a Classification Tool, using Principal Component Analysis, for

- Process Monitoring
- Optimise Process Control
- Identify Origin of Materials

Inter-process monitoring

PCA analysis of the Bryn Power plug flow digester illustrates the potential of in-tank process monitoring.



vledge Economy Skills Scholarships

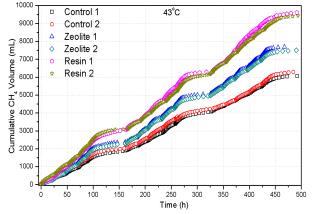
nfa Gymdeithasol Ewrop European Social Fund

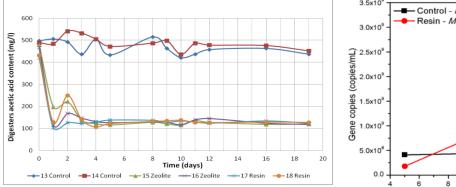
GC-IMS Chemical Fingerprinting Feedstocks, Intermediates and Digestates

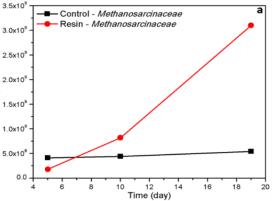
terpenes, ketones, aromatics, alcohols, aldehydes, volatile fatty acids, esters and ammonia

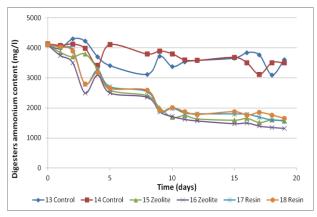
propean Region

Cronfa Gymdeithasol Ewr European Social Fund

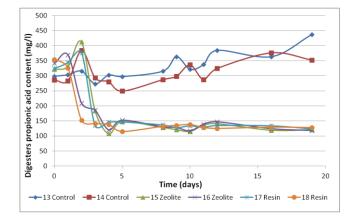

Rapid fingerprinting and differentiation of pollutants potentially entering the environment using GC-IMS and SOM

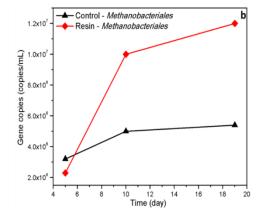

Case Study 2: Samples		Firing Neuron (1 Dimension – Total of 15) After 1000 Iterations														
		N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14	N1
100% leachate	S17	•														
100% leachate	S18	•														
100% sewage	S19									•						
100% sewage	S20													•		
100% trench	S21		•													
100% trench	S22		•													
50% leachate + 50% clean soil	S2 3	•														
50% leachate + 50% clean soil	S24	•														
50% sewage + 50% clean soil	S25										•					
50% sewage + 50% clean soil	S26											•				
50% deionised water (DI) + 50% clean soil	S27								•							
50% deionised water (DI) + 50% clean soil	S28							•								
50% trench + 50% clean soil	S29		•													
50% trench + 50% clean soil	S30		•													
100% maize leachate	S31				•											
100% maize leachate	S32				•											
100% manhole S4	S33						•									
100% manhole S4	S34						•									
100% petrol interceptor	S35					•										
100% petrol interceptor	S36					•										
100% pond outlet	S37					•										
100% pond outlet	S38					•										
100% rye leachate	S39			•												
100% rye leachate	S40			•												


Figure 3B. SOM for case study 2

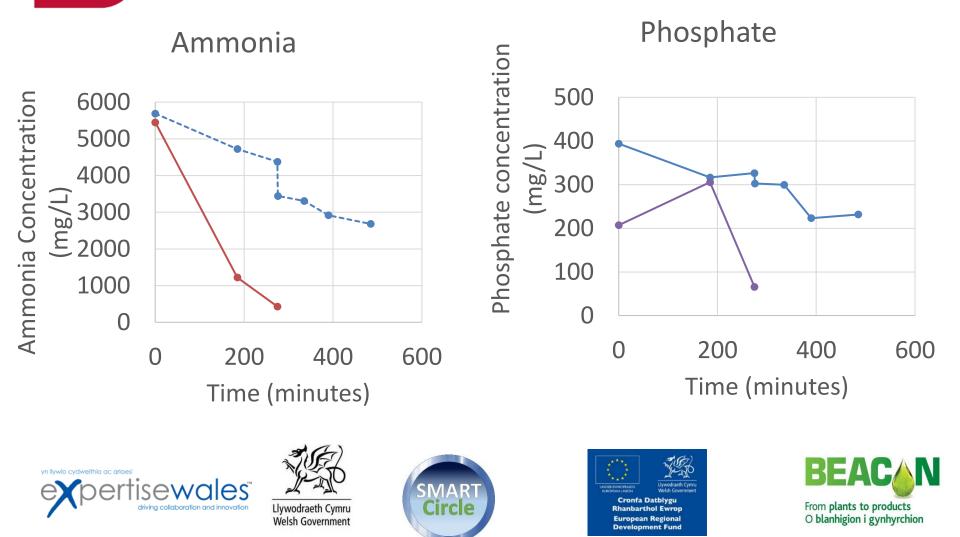


Ammonia Recovery from High Sewage Sludge Content Digesters

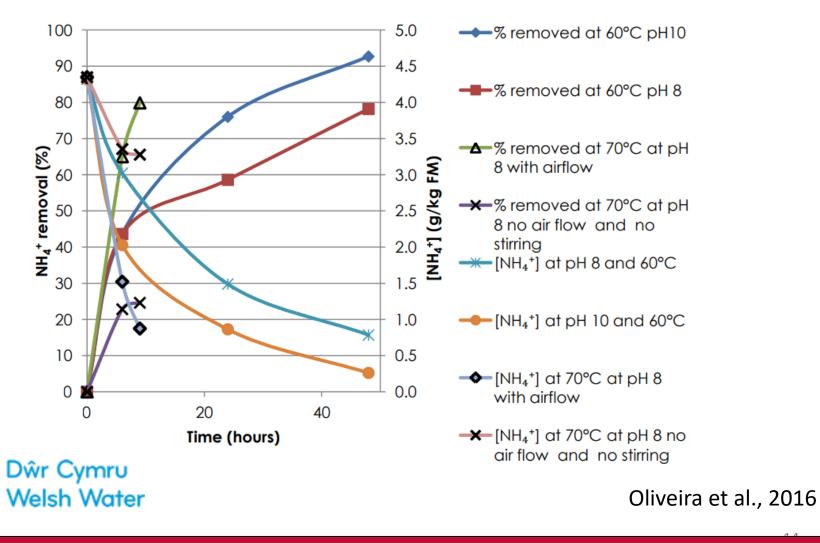




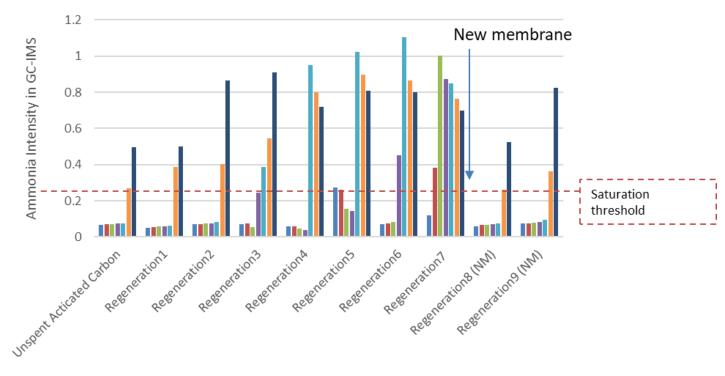
Tao *et al*. (2017)


Digestate Fractionation

University of


South Wales Prifysgol De Cymru

>90% Recovery of NPK



Ammonia Stripping - Effect of temperature, mixing and air flow on the rate of ammonium removal from digestate

Spent Activated Carbon Regeneration using a Membrane System

■ 0 ■ 20 ■ 40 ■ 60 ■ 80 ■ 100 ■ 120 (µL NH3/g Regenerated AC)

NB: AC - Activated Carbon, NW-Membrane replacement

Regeneration of the AC was effective up to cycle 9 For GP Biotec ~ 5 years usage rather than 6 months

Water Breakthrough Challenge **Transforming the energy balance of wastewater treatment** September 2022 – August 2026

- Develop solutions to reduce the energy required for wastewater treatment
- Decarbonise wastewater treatment reducing nitrous oxide emissions and recovering beneficial resources including N and P
- The water industry consumes between 2-3% of electricity produced in the UK (~powering over 1.2 million homes) and ~55 % is linked to the processing of wastewater

Special Acknowledgements

Dr. Tim Patterson

Dr. James Reed

Dr. Phil Kumi

Dr. Savvas Savvas

Dr. Raj Gangappa

Dr. Sky Redhead

Dr. Adam Henley

Dr. Angela Oliveira

Ciaran Burns

Michael Darke

Dr. Bing Tao

Dr Ivo Oliveira

Acknowledgments

Welsh Government rop & Chymru: Buddsoddi yn eich dyfodo Cronfa Datblygu Rhanbarthol Ewrop Europe & Wales: Investing in your future uropean Regional Development Fund

Llywodraeth Cymru Welsh Government

The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the funders opinion. Neither the authors or the funders are responsible for any use that may be made of the information contained therein.