Gas Chromatography-Vacuum Ultraviolet spectroscopy (GC-VUV): a sustainable alternative measurement technology for volatile species. An early research application

Brenna Phillips, BSc (Hons), MSc b.r.phillips@swansea.ac.uk

Introduction

Sources of pollution

- Plastic waste from personal care products (PCP) & food packaging (FP) are ubiquitous in the environment.
- Contain **primary plastic & additives** latter can be **toxic to humans & environment**.
- <u>Leachate of additives a cause for concern</u>.

Drivers for new monitoring methods

- Current methods offer insufficient molecular selectivity to understand impact & risk.
- International treaties & HMG policy for Enhanced Producer Responsibility requires better monitoring for enforcement.

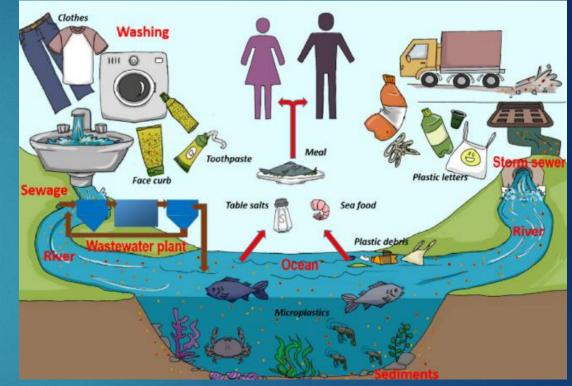


Figure 1. Microplastic pollution in aquatic environments and impacts on food chains. [1]

Multi-modal GC-VUV

- <u>Optic-4</u>: multi-modal inlet (pyrolysis/TD, liquid injection) to analyse solids & liquids.
- <u>GC-VUV</u>: Sensitive, 3D data (wavelength, time, absorbance) specific to chemical structure. Offers broader molecular detection & structural isomer elucidation (unlike standard GC-MS).
 - With backflush & N₂ gas for cleaner, greener (more <u>sustainable</u>) operation.

Research Aim

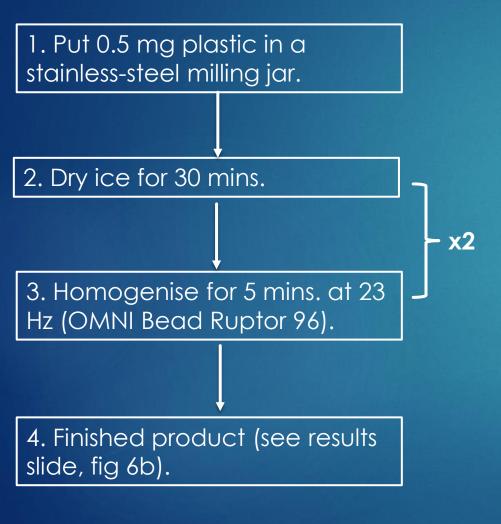

• Investigate utility of multi-modal inlet GC-VUV for plastics characterization.

Figure 2. Image of multi-modal GC-VUV, situated in Swansea University's School of Medicine (<u>1st & only in UK!</u>).

Method

Homogenisation of PCP & FP

Pyrolysis (Pyr)/ Thermal Desorption (TD)

GC-VUV

- GC ZB-1 (Restek) 30 m, 0.25 mm x 0.25 μ m, 1.1 mL/min N₂ carrier gas, backflush flow 6.1 mL/min.
- VUV make-up gas 0.35, system gas 3.0 psi, flow cell & transfer line @ 340 °C, 125-430 nm.

Optic

- Pyr 0.1 mg plastic, heated 35-600 °C at 60 °C/sec.
- TD 0.1 mg plastic, heated 35-350 °C or 400 °C at 60 °C/sec.

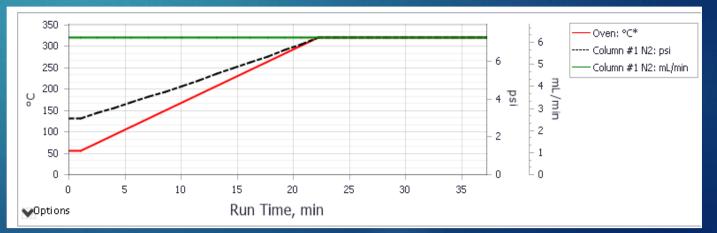
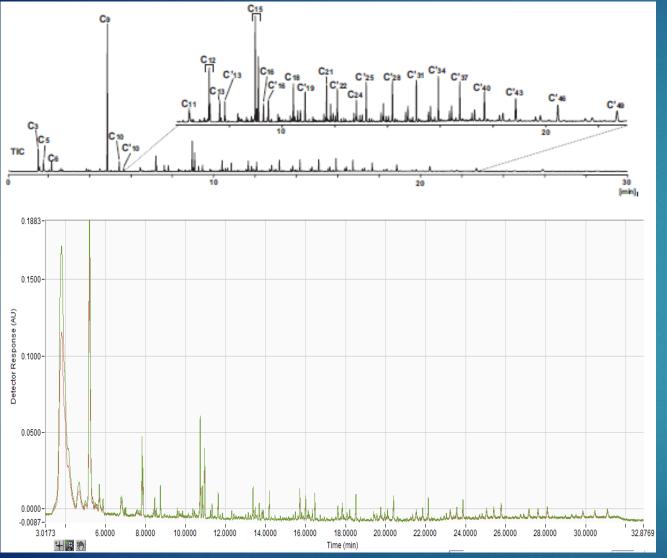



Figure 3. Gradient program for GC.

Results: GC-VUV

Pyrolysis

Figure 4. Pyrograms of PP via GC-MS & GC-VUV. Top – GC-MS using similar DB-1 column (25 m, 0.53 μ m) showing C3-34 & additives taken from Shin et al. [6]. Bottom – using GC-VUV with ZB -1 column (25 m 0.25 μ m).

Benefits of running with GC-VUV rather than GC-MS

- More peaks identification with PP, PE, PET and PS, providing further information on each plastic.
- Different pyrogram with <u>oxygenated</u> <u>species (PP & PE) – alternative</u> <u>chemistries formed?</u>

Table 1. Pyr-GC-MS data (from literature)comparison with Pyr-GC-VUV

Temperature 600°C				
	Numbe <mark>r</mark> of peaks			
Plastic	GC-MS	GC-VUV		
PP	61	83		
PE	26	64		
PET	28	44		
PS	29	35		

Results: Homogenisation

Figure 5. 0.5 g of PCP (left) & food packaging (right) before dry ice & <u>automated</u> homogenization.

Table 2. Particle sizes of PCP and FP using a digital caliper.

Unsuccessful		Successful	
PCP	FP	PCP	FP
5.47 mm	6.05 mm	0.54 mm	0.91 mm
1.97 mm	2.87 mm	0.29 mm	0.64 mm
2.93 mm	3.62 mm	0.25 mm	0.52 mm

Figure 6a. Particles of PCP & food packaging unable to be broken down

Figure 6b. Particles of PCP & food packaging broken down to smaller particles

Conclusion and future work

Developed GC-VUV plastics analysis method & established <u>new</u> plastics spectral database. 1. Will compare data with GC(xGC)-MS coupled with Optic-4 inlet to elucidate unknowns.

2. Develop GC-VUV method for plastic additives & expand plastics VUV library for additives. 3. Characterise leachate using homogenisation & GC-VUV method – compare with standard plastics analysis (e.g. FT-IR & AFM.)

Acknowledgements

Swansea University

Dr A. Ruth Godfrey Professor Lewis Wyn Francis Dr Rachel Townsend Professor Steve Conlan Dr Sarper Sarp

Industry

Nathan Burley Dr Jonathan Smuts Dr Derrell Sloan Paul H. Roberts Anthony Buchanan Ryan Sutherill

